Effect of Laser Remelting Power on Immersion Corrosion of Amorphous Al–Ti–Ni Coatings

نویسندگان

  • Haixiang Chen
  • Dejun Kong
چکیده

An arc-sprayed amorphous Al–Ti–Ni coating on S355 structural steel was processed by laser remelting (LR) at powers of 600, 800, and 1000 W. The surface-cross-sectional morphologies, chemical element distributions, and phase compositions of the as-obtained Al–Ti–Ni coatings were analyzed using a scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively. The immersion corrosion tests of Al–Ti–Ni coatings in 3.5% NaCl solution for 720 h were performed to investigate the effects of LR power on their immersion corrosion behaviors. The test results show that the amorphous Al–Ti–Ni coatings form good metallurgical bonding with the substrate after LR. The AlNi, Al3Ti, Al3Ni2, Ti3O5, and Al2O3 amorphous phases are detected in the Al–Ti–Ni coatings after LR. The corrosion potentials of Al–Ti–Ni coatings after LR show a positive shift relative to that of S355 steel, implying that the corrosion resistance of Al–Ti–Ni coatings was superior to that of S355 steel. A dense protective Al2O3 film is formed on the Al–Ti–Ni coating surface at an LR power of 1000 W, at which power the highest corrosion potential of −0.233 V is observed. The corrosion mechanisms of Al–Ti–Ni coating at the LR power of 1000 W are uniform corrosion and pitting corrosion, while those of Al–Ti–Ni coatings at the LR powers of 600 and 800 W are localized corrosion and pitting corrosion. The corrosion resistance of Al–Ti–Ni coating with the LR power of 1000 W is better than those at the LR powers of 600 and 800 W, effectively improving the corrosion resistance of S355 steel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Al-Ti-N Composite Coatings on Commercially Pure Ti Surface by Tungsten Inert Gas Process

The present work aims to modify surface properties of pure Ti by development of Ti-Al-N intermetallic composite coatings. In this regard, tungsten inert gas (TIG) cladding process was carried out using Al 1100 as filler rod with Ar and Ar+N2 as shielding gases. Phase and structure of the samples were investigated by X-ray diffraction (XRD) technique, optical microscopy (OM) and scanning electro...

متن کامل

تولید و بررسی رفتار خوردگی پوشش اکسیدهای فلزی مخلوط Al2O3/MgO/TiO2 به روش سل- ژل روی زیرلایه آلومینیم

In this study, mixed metal oxides Al2O3/MgO/TiO2 coatings with Al/Mg/Ti ratios of 5:1:3 and 2.5:3:4 were coated on AA1100 aluminum by sol-gel method. The surface morphology, phase analysis and the corrosion behavior of the Al2O3/MgO/TiO2 coatings were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and electrochemical impedance spectroscopy measurements (EIS) in 3....

متن کامل

Development of Corrosion Resistant Zn-Ni-TiO2 Composite Coatings

The Zn-Ni-TiO2 composite coatings were developed on mild steel by electrodeposition method. The bath constituents (ZnSO4.6H2O, NiSO4.6H2O, TiO2, thiamine hydrochloride) and operating conditions (temperature and pH) were optimized by Hull cell method, for peak performance of the coating against corrosion. The coatings were prepare...

متن کامل

Corrosion Protection Performance of Nanoclay-Polyester Nanocomposite Coatings

In this paper, polymer-based nanocomposites powder were applied on the surface of plain carbon steel by electrostatic device and then were cured by microwave. The effect of adding nanoparticles on the corrosion resistance properties of the coatings was investigated by Electrochemical Impedance Spectroscopy and immersion test in 3.5 NaCl solution. Coatings structure and morphology of nanoparticl...

متن کامل

Corrosion Behavior of Ti/TiN Multilayer Nanostructured Coatings Applied on AISI 316L by Arc-PVD Method in the Simulated Body Fluid

In this investigation, Ti/TiN nanolayer and TiN single layer coatings were coated on substrate of AISI 316L stainless steel by applying physical vapor deposition (PVD) using the type of cathodic arc evaporation (CAE). The evaluation of microstructure were carried out using x-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM) as well as scanning electron microscopy (SEM). Pola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018